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Abstract

As assisted and autonomous driving systems become more preva-
lent, the need for accurate interpretation of road traffic signs is
critical for driving safety and functionality. Current camera-based
recognition methods face challenges due to the variability of traffic
signs and environmental conditions, leading to potential inaccura-
cies. To address this, we propose LiDARMarker, a type of machine-
readable traffic sign using infrared materials, making it invisible
to human drivers but detectable by LiDAR-equipped vehicles. This
paper introduces the design, fabrication, and efficient decoding
methods of LiDARMarker. LiDARMarker is tailored to the emerging
capabilities and needs of modern vehicles, enhancing their ability
and accuracy in traffic sign recognition while avoiding interference
with human drivers. Through the proposal of LiDARMarker, we
aim to inspire the rethinking of the design of traffic sign systems
in the context of modern vehicles.
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1 Introduction

Recently, assisted and autonomous driving systems (ADS) have
been increasingly integrated into modern vehicles [42]. ADS en-
ables vehicles to perceive their surrounding environment and make
control decisions, either to assist the driver (in critical situations) or
to achieve autonomous driving. Advanced ADS relies on a range of
intelligent technologies, such as pedestrian and vehicle recognition,
lane detection, route planning, and more [27]. Among these, the
ability to accurately interpret road traffic signs, i.e., pavement mark-
ings and road signs, is essential to its core functionalities. These
markers not only provide necessary navigation information but also
indicate important driving regulations, serving as the foundation
for safe driving.

Currently, ADS primarily relies on two methods to acquire road
traffic sign information. One method involves using the vehicle’s
location to retrieve information from digital maps [5]. However,
due to the limited coverage of high-precision maps and the accu-
racy of localization technology, this method has limitations in both
granularity and precision. Therefore, a more generalized approach
is to incorporate vehicle cameras to capture and recognize traffic
signs in real-time through computer vision algorithms [13].

Over the past few years, substantial efforts have been made by
both academia and industry to improve camera-based sign recogni-
tion accuracy [24]. However, this method still struggles with the
complexity arising from the diversity and variability of traffic signs
and environmental conditions. Current recognition algorithms are
trained on limited datasets, and while most road traffic signs fall
within the feature range depicted by these datasets, there are in-
evitably out-of-range cases in real-world scenarios, such as con-
struction zones [36], rural roads [1], and private roads [35]. Even
standard traffic signs cannot be guaranteed to be correctly recog-
nized under conditions like bad weather, complex lighting, or when
the signs are damaged or aged.

One major cause of these issues lies in the fact that the primary
target of current traffic signs is human drivers. To convey necessary
information quickly and with minimal cognitive overhead during
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driving, the content of these signs is often designed to be as human-
friendly as possible, e.g., symbols or simplified text. However, this
design is not fully aligned with the preferred information formats
for machine vision. These signs are not only difficult to distinguish
from the physical environment but also lack prominence, or are
even deficient, in many key properties of information delivery,
such as information density, signal contrast, and error correction
capabilities. But what if machine-friendly traffic signs, e.g., using
a structured binary image similar to barcodes, were added to the
current road environment? Traffic regulations strictly limit the
density and usage conditions of traffic signs, not to mention that
such attempts could lead to barcode signs competing with existing
signs and distracting the driver’s visual attention.

The traditional design of road traffic signs is driver-centric, but
with the rapid development of ADS, we believe it is time to reassess
this philosophy. If traffic signs could provide more efficient and
accurate information to ADS systems, it could effectively enhance
the functionality and safety of modern driving. As such, we envision
that modernized traffic signs should not only cater to the capabilities
and needs of drivers but also to those of ADS-equipped vehicles.
Specifically, they should be machine-friendly while avoiding visual
interference with driver. Additionally, from a practical perspective,
they should allow for smooth deployment and maintenance.

To meet these requirements, we propose a type of traffic sign
called LiDARMarker, a specialized barcode dedicated for the driv-
ing environment. Unlike traditional traffic signs that reflect visible
light to convey information, the content of LiDARMarker is made
using visual-transparent and infrared-absorbing materials, making
it invisible to the human eye. It can be overlaid as a transparent
coating on top of traditional traffic signs or applied to any blank sur-
faces, such as buildings and roadways. To vehicles, LiDARMarker’s
content is revealed through the images captured by its LIDAR, not
by the camera. LIDAR is a widely used distance measurement and
long-range imaging sensor in modern ADS vehicles. Since LIDAR
uses infrared (IR) lasers for active sensing, its imaging data will
include changes caused by the IR content of LiDARMarker. The
ADS can extract the marker’s information using its LIDAR data.

As shown in Fig. 1, LiDARMarker is a structured 2D graphical
code similar to barcodes, but LiDARMarker faces issues that differ
from known barcodes. LiDARMarker is not intended to be captured
by cameras; instead, it is presented in LiDAR point cloud. This
introduces a series of unique challenges. Firstly, the reason for
LiDARMarker sector-like shape is to ensure that the marker can be
reliably decoded from sparse point cloud data, addressing the limita-
tions of standard barcodes, which are often ineffective at conveying
directional information. The sector shape allows LiDARMarker to
provide both positional and directional cues, which are crucial for
orientation estimation within the 3D space represented by LiDAR
data. Secondly, processing point clouds with millions of data points
introduces substantial computational demands. An easily recogniz-
able marker structure is specifically designed to facilitate quick and
efficient extraction, reducing the computational load required to
locate and decode the marker amidst large volumes of point cloud
data. This optimization is essential for real-time applications, where
fast processing is critical to maintaining performance.

We implement LiDARMarker in a real-world traffic environment
and evaluate its performance under practical conditions. The results
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Figure 1: LiDARMarker assists LiIDAR-equipped vehicles to
better perceive traffic sign. The LiDARMarker is applied to pave-
ment surfaces to guide LIDAR-based vehicles, remaining invisible
to the human eye while detectable by LiDAR.

demonstrate that LiDARMarker, leveraging its innovative marker
design and decoding pipeline, can effectively assist LIDAR-equipped
vehicles in obtaining navigation information within a 15-meter
range, operating at a frame rate of 60 Hz. We believe that LiDARMarker
can serve as a valuable addition to the current traffic sign system,
offering a new and efficient way to convey critical information
to ADS while preserving the aesthetic and functional integrity of
existing road infrastructure. To summarize, this paper makes the
following contributions:

e We propose LiDARMarker, a novel, invisible navigational
marker system specifically designed for LIDAR-equipped
vehicles. LiDARMarker is engineered to be machine-friendly,
undetectable by human vision, and seamlessly compatible
with existing traffic signage.

e We design a sector-shaped barcode marker structure that
is optimized for easy detection and decoding from LiDAR
point cloud data. The unique shape and layout of the marker
allow for efficient extraction and decoding, ensuring real-
time performance even in dense traffic environments.

e We implement LiDARMarker and conduct extensive evalua-
tions in a practical traffic environment, testing the system’s
overall performance in terms of detection capability, decod-
ing accuracy, and real-time processing efficiency. The results
show that LiDARMarker can assist ADS-equipped vehicles
in obtaining accurate navigation information, enabling real-
time operations.

2 Prior Knowledge

In ADS scenarios, the distance to environmental objects is an impor-
tant factor to consider when making control decisions [21]. Among
various distance sensing methods, the LiIDAR sensor stands out
with advantages in detection range, accuracy, spatial resolution,
and robustness to dynamic lighting conditions [46]. With the rapid
decrease in manufacturing costs, the global market saw a shipment
of automotive LiDAR sensors reaching 0.7 million units in 2023 [41],
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Figure 2: LiDAR ranging principle.

with an expected growth rate of 19.5% in 2024 [38]. LIDAR has be-
come a common sensor in new vehicles, especially those equipped
with advanced ADS. LiDARMarker works with LiDAR sensors, so
in this section, we will introduce the LiDAR working principle.

2.1 LiDAR Ranging Principle

LiDAR utilizes the time-of-flight (TOF) mechanism to measure dis-
tance [22]. As illustrated in Fig. 2, the key components of LIDAR
include a laser pulse emitter and a photodetector. During distance
measurement, a portion of the energy from the laser pulse emitted
by the emitter is reflected by objects in the environment and re-
turned, then the photodetector records the time delay ¢ of the echo
pulse relative to the emitted pulse. The distance to the object can
then be determined using the formula d = t X ¢/2, where c is the
speed of light.

In automotive applications, the operating wavelength of LIDAR’s
laser emitter is generally chosen from 905 nm or 1550 nm [14, 32].
These wavelengths fall within the IR spectrum, which is invisible
to the human eye. One advantage of this design is that it avoids
light interference with pedestrians and other drivers when the Li-
DAR is in operation. However, invisibility does not imply that it
poses no risk to the human eye’s photoreceptor cells. Due to eye
safety concerns, IR lasers are subject to strict power limitations.
By using highly sensitive photodetectors, such as avalanche photo-
diodes [17], a typical ranging distance of over 200 meters can be
achieved [14, 32]. It is worth noting that light-based ToF ranging
does not necessarily require lasers as the light source; however,
laser beams have high directionality, which maximizes the ranging
distance under limited power conditions.

2.2 LiDAR Imaging Principle

A clear advantage of LIDAR compared to radio frequency and acous-
tic radar is its ability to provide image-level resolution for object
distance information. This is achieved by extending the single-point
ranging mechanism shown in Fig. 2 into the spatial domain: control-
ling the laser beam to perform high-speed 2-dimensional scanning,
generating continuous distance measurements of the surrounding
environment. By considering the scanning angle of the laser beam
and the corresponding distance information, the 3-dimensional po-
sition of each reflection point in space can be obtained, resulting in
a 3D Point Cloud.
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Figure 3: Different LiDAR scanning mechanisms.

LiDAR scanning can be implemented in various ways, and dif-
ferent scanning methods result in different point cloud timing se-
quences and data structures, which are closely related to the effi-
ciency of point cloud processing [26]. Early LIDAR systems use a
mechanical rotating structure [31], where the emitter and detec-
tor in Fig. 2 rotate as a whole to measure different positions. An
example is shown in Fig. 3(a). A rotor is used to carry multiple
stacked laser emitters and detectors, allowing a column of beams to
measure each time. When the rotor rotates by a degree, the position
of this column of beams scans accordingly, thereby covering the
entire Field of View (FoV), as shown in Fig. 3(d). We refer to the set
of 3D points measured by the same detector as a scanning line. For
example in Fig. 3(d), the points on each horizontal line belong to
the same scanning line.

The mechanical LIDAR has a simple structure, but it comes with
the drawbacks of high cost and a large form factor. More integrated
solutions using built-in prisms and Micro-Electro-Mechanical Sys-
tem (MEMS) mirrors have been developed, rapidly replacing me-
chanical LiDAR in ADS [23]. Fig. 3(b) and Fig. 3(c) provide two
examples. The prism LiDAR simplifies the scanning structure by
using a rotating prism mirror to reflect the laser beams instead of ro-
tating the laser emitters. Its scanning line structure is similar to that
of mechanical LiDAR. In Fig. 3(c), the MEMS LiDAR uses a MEMS
mirror capable of 2D oscillation to reflect the laser beams [30]. The
left-right oscillation of the MEMS mirror allows the reflected laser
beams to scan back and forth horizontally, and by adding a suitable
(slow) vertical oscillation, it can further span the left-right scan-
ning to achieve 2D spatial scanning in both horizontal and vertical
directions. Fig. 3(e) shows MEMS LiDAR can cover an entire area
using just a single laser beam, the points forming the entire zigzag
pattern belong to the same scanning line.

3 Motivation

ADS relies on multiple channels to obtain or confirm road traffic
information because no single channel can perfectly guarantee
accurate acquisition. Consulting digital maps not only depends
on precise and timely-updated map information but also requires
accurate vehicle location data, which cannot be fully guaranteed
with current localization technologies. Vehicle localization primar-
ily based on satellite navigation faces challenges such as location
drift and inaccurate altitude in complex mountainous and urban
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environments. Scenarios such as multi-branch tunnels, large inter-
changes, and complex overpasses are common situations where
accurate vehicle localization is difficult to ensure. Additionally, in
non-urban areas, the timeliness of digital maps is often a more
pronounced issue.

Camera-based visual methods can recognize road traffic signs
in real-time, providing important supplementary information for
ADS. However, current road traffic signs are human-centric, using
symbols and simple text as the medium for information expression.
Vision algorithms based on statistical information may not effec-
tively cover content with highly arbitrary features; for example,
customized signs outside of the training set may appear in some
areas. Furthermore, cameras utilize reflected environmental light
from objects for imaging. In low-light conditions, such as heavy
rain and nighttime, or in situations with dynamic changes in ambi-
ent light, such as entering or exiting tunnels, the imaging quality is
affected, which impacts recognition results.

To this end, we believe that additional mechanisms should be
developed to further enhance the redundancy of the ADS’s infor-
mation acquisition capabilities, which is particularly important for
achieving large-scale autonomous driving in the near future. There
are many possible design choices to address some of the limita-
tions mentioned above, such as adopting radio markers, intelligent
visible light markers, and improved vehicle localization methods.
While we do not oppose these methods—since safety redundancy
can never be excessive—we hope to find a solution that is both
smooth in deployment and low in maintenance costs. Thus, we
conducted this research to design a new road traffic marker system,
LiDARMarker, with the following desirable properties:

(1) Machine-friendly information carrier. LiDARMarker is a struc-
tured graphical encoding method similar to a barcode. It uses
high-contrast binary patterns to encode information and
has a well-defined symbol space, allowing for fast, efficient,
error-detectable, and prior-knowledge-agnostic decoding
algorithms.

(2) Invisible to humans and cameras. LiDARMarker’s encoded

content is physically expressed using infrared optical materi-

als, which are nearly transparent in the visible light spectrum.

Thus, overlaying LiDARMarker on existing sign panels or de-

ploying new LiDARMarker markers will not interfere with

current road traffic signs or affect the aesthetics of buildings
and roads.

Good adaptability to lighting conditions. The encoded con-

tent of LiDARMarker is expected to be captured in the vehi-

cle’s LiDAR point cloud. LiDAR illuminates and images the
environment using its laser pulses, making it insensitive to
ambient light changes.

(4) Easy maintenance. LiDARMarker’s encoded content can be
encapsulated as a transparent overlay within ordinary traffic
sign panels or applied to the road surface with transparent
adhesive materials. To combat aging and damage, it requires
periodic maintenance measures similar to those for current
traffic signs.

(5) Easy vehicle deployment. For LIDAR-equipped vehicles, de-
coding LiDARMarker only requires an update to its ADS
software.

®)
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Figure 5: IR-absorbing coating absorbs IR energy, reducing
the brightness in IR cameras and the intensity in LiDAR.

4 Marker Design
4.1 IR Absorbing Materials

In this section, we introduce the infrared (IR) absorbing materials
used in the marker design, discussing their properties and how
they affect the LIDAR-generated point cloud. Following this, we
demonstrate how these properties are utilized to create an effective
marker pattern.

4.1.1  Property of IR Absorbing Materials. As its name suggests, the
material’s primary function is to absorb IR light. Many materials,
such as graphite or even black printer paper, can absorb IR, but
they are unsuitable for our marker design as they are visible to
the human eye. To avoid visual interference in driving situations,
we repurpose a type of window glass coating originally developed
for heat retention in buildings, as shown in Fig. 4. This coating
contains metal nanoparticles, such as antimony tin oxide (ATO)
and indium tin oxide (ITO), which give the undiluted coating a deep
blue hue. The coating absorbs IR light with about 80% efficiency
while transmitting approximately 90% of visible light at a thickness
of 5 to 10 micrometers. This combination of high IR absorption
and high visible-light transmittance makes it ideal for our marker,
allowing it to remain “invisible” to the human eye while still being
detectable in LiDAR point clouds.

To illustrate this effect more clearly, we demonstrate the impact
of the IR-absorbing coating on traffic signs in both the visible light
and IR light domains, as shown in Fig. 5!. In Fig. 5(a), a strip of
IR-absorbing coating is applied to a traffic sign, highlighted by the
red box. In the RGB image, the traffic sign remains clearly visible
through the coating, allowing drivers to read the sign’s information
without obstruction.

However, in Fig.5(b), captured by an IR camera, a noticeable
difference in reflected IR light brightness is observed between the

!The RGB and IR images were captured using a DUMU RGB-IR camera [9], and the
point cloud data was captured using a Robosense M1 LiDAR [32].
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coated and uncoated areas. The region with IR-absorbing coating
appears darker. Similarly, in the LiDAR point cloud data shown in
Fig.5(c), the coated strip exhibits lower intensity than the uncoated
areas. This contrast in intensity allows information to be encoded
within the point cloud without affecting human visibility, making
the IR-absorbing coating an effective and non-intrusive marker for
LiDAR-based navigation.

We note that Fig. 5(a) is specifically designed to highlight differ-
ences in the visible light domain by applying an undiluted coating
with a thicker layer. However, in practical applications, a diluted
coating and thinner coating layers are used to ensure that the coat-
ing remains invisible to the human eye. To study the visibility of
IR-absorbing coatings with varying thicknesses, we conducted an
experiment, as shown in Fig.6. We used a plastic film coated with an
IR-absorbing layer approximately 5 um thick, as depicted in Fig.6(a),
and then stacked multiple layers of this film onto a sign featuring a
reflective coating (Fig.6(b)).

We subsequently measured the contrast in the RGB and IR im-
ages, as displayed in Fig. 7. The results show that, as the number of
coated film layers increases, the decrease in RGB contrast is more
significant than the drop in IR contrast. Since the human eye’s min-
imum detectable contrast ranges between 0.5% and 2%, the traffic
sign remains readable to both the human eye and RGB cameras, but
lower contrast affects the clarity of the IR camera image. Addition-
ally, we examined the LiDAR intensity under the same conditions,
as indicated by the red trend in Fig. 7. As the coating thickens, the
LiDAR intensity exhibits a similar decline to that observed in the
IR camera.

Conclusion: We introduced an IR-absorbing coating and demon-
strated its effects on RGB cameras, IR cameras, and LIDAR. When
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applied to an object, this coating reduces reflected IR energy in the
coated areas while preserving the object’s visible appearance. This
property enables the embedding of navigational information into
LiDARMarker without affecting human vision or the readability of
traffic signs.

4.2 Marker Symbology

Numerous markers have been designed and can be categorized into
two main types: 1) one-dimensional (1D) barcodes, such as linear
barcodes, and 2) two-dimensional (2D) barcodes, such as quick re-
sponse codes (QR codes). Some works have adapted these markers
for use with LiDAR sensors, including calibration boards [3] and
VR applications [18]. However, these approaches rely on 2D image
processing mechanisms, which fail to fully exploit LIDAR’s unique
imaging properties and scanning mechanism. This leads to ineffi-
ciencies and limits their real-time performance. In this section, we
analyze the shortcomings of existing markers and introduce our
marker design.

4.2.1 Design Choice. The linear barcode is a type of 1D marker,
representing data using a combination of black bars and white
spaces. However, two key challenges prevent their direct use in
LiDAR processing.

First, the encoding mechanism of barcodes relies on bar-width
ratios, which require LiDAR to detect the narrowest bar and ac-
curately measure relative widths. For example, the symbol “A” in
Code-128 [10] encodes widths as “111323”. Only by accurately mea-
suring the width of "1" can the width of 2 and 3 be measured.
However, LIDAR’s resolution limitations may prevent detection of
the narrowest bar, causing decoding failures. Second, barcodes lack
orientation information, which is critical in traffic scenarios for
determining driving direction. For instance, vehicles must identify
a marker’s orientation on the road surface to navigate correctly.
Consequently, reliance on bar-width ratios and the absence of orien-
tation cues make linear barcodes unsuitable for LIDAR processing
in traffic applications.

A 2D barcode, also known as a matrix barcode, encodes informa-
tion both horizontally and vertically, offering greater data capacity
compared to linear barcodes. The most well-known example is
the QR code, which consists of black squares arranged on a white
background. However, 2D barcodes still face similar resolution
challenges as their 1D counterparts.

Fig. 8 illustrates four types of 2D barcodes captured in a LIDAR
point cloud from a distance of 6.7 m. At this distance, the bound-
aries of individual black squares cannot be accurately measured,
resulting in blurry edges and making decoding difficult. Decoding
a 2D barcode requires each LiDAR point to correspond precisely
to a square in the barcode. However, due to laser beam aperture
effects and sampling errors, the measured intensity can deviate
from the actual value, causing the distinction between black and
white squares to become blurred. This inherent limitation makes 2D
barcode decoding challenging and error-prone. Some approaches at-
tempt to compensate by superimposing multiple frames to enhance
resolution, but this sacrifices real-time performance.

Additionally, the orientation estimation of 2D barcodes relies on
specialized patterns, such as the three squares in the corners of a QR
code, which are protected by quiet zones under ideal conditions. In
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Figure 8: The four types of 2D codes in a point cloud. 2D codes
are place 6.7 m away from LiDAR.

real-world traffic environments, however, these patterns are often
degraded or lost due to low LiDAR’s resolution and noise.

Lastly, for traffic applications, traffic signs typically convey sim-
ple information, such as speed limits, stop commands, or direc-
tional indicators e.g., "Turn Left". The high information capacity
of 2D barcodes is unnecessary for these use cases, making them
overly complex to maintain and inefficient in practice. Therefore,
we summarize the challenges of existing markers in LiDAR imaging
systems as follows:

e Orientation estimation should not rely solely on specialized
patterns within the marker.

e Binary encoding mechanisms must be robust to variations
in distance and scanning angles.

e The marker design should be easily distinguishable from
other objects and simple to maintain.

4.2.2  Marker Design. Fig.9(a) illustrates the marker structure of
LiDARMarker, while Fig.9(b) presents the LiDAR view when the
marker is applied to a pavement road surface with an IR-absorbing
coating.

To address challenge 1), we replaced the approach of relying on
specific patterns for orientation estimation with an unconventional
quarter-circle sector outline. This design choice ensures that the
marker is easily distinguishable from other traffic objects such
as signs, road markings, and vehicles. For orientation decoding,
the outline of the quarter-circle sector is extracted by fitting a
curve to the LiDAR points cloud corresponding to the IR absorbing
regions (details of this process are discussed in Sec.5). The quarter-
circle sector comprises several concentric bars of equal width, each
representing either a high-reflection bar (1) or a low-reflection bar
(0). Low-reflection bars are coated with IR absorbing coating, as
described in Sec.4.1.1, while high-reflection bars correspond to the
road surface.

To address challenges 2) and 3), we utilize equal-width bars in-
stead of the variable-width bars commonly used in linear barcodes.
In variable-width designs, decoding depends on the narrowest bar,
which may be feasible at close range with high-resolution cameras
but becomes problematic in LIDAR systems with limited resolution
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Figure 9: The LiDARMarker marker design and its LiDAR
view when applied to a pavement road surface with an IR-
absorbing coating,.

(1200x128) and at longer distances. The inability to detect the nar-
rowest bar effectively establishes a lower boundary for decoding
the entire marker. By adopting equal-width bars, we mitigate this
issue, reducing the barrel effect and increasing the probability of
successful detection for each bar. For example, under the same total
marker width and distance, equal-width bars are 1.57 times wider
than the narrowest bar in a variable-width design encoded by Code-
128. This makes equal-width bars significantly easier for LIDAR to
detect, particularly in low-resolution or long-range scenarios. Since
multiple scan lines may pass through the marker simultaneously, as
long as one scan line contains all bars, a partially occluded marker
will still function correctly.

4.2.3 Data Structure. The data structure of the bars consists of a
start bar, data bars, a parity bar, and an end bar. The start and end
bars are single low-reflective bars that serve two main functions:
1) they indicate the beginning and end of the data bar sequence
for decoding, and 2) they provide a reference outline shape for
orientation estimation.

The data bars can vary in length and are used to encode the
traffic sign’s information. The parity bar employs even parity to
validate the integrity of the data bars. Notably, the data bars are not
limited to an 8-bit capacity and can be extended to include more
bars for encoding more information. However, an 8-bit capacity is
sufficient for most traffic signs and pavement markers in practice.
For instance, the US road symbol signs [11] define 184 traffic signs,
and China defines 65 [48], both of which can be fully covered
within an 8-bit system. This marker design is tailored to leverage
the LiDAR’s imaging properties and unique scanning mechanism,
thereby reducing decoding overhead and enabling real-time marker
decoding. Further details on marker detection and decoding are
provided in Sec. 5.

5 Marker Detection and Decoding

5.1 Processing Point Cloud Data

Typically, LIDAR point cloud processing approaches fall into two
main categories. The first category transforms the point cloud into
a 2D image and then uses image processing techniques to detect
the marker. The second category processes the data directly in 3D.
However, these approaches often incur substantial computational
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Figure 10: The pipeline of marker detection and decoding.

overhead. For instance, performing bird’s-eye view transforma-
tions to be compatible with established 2D methods, accumulating
point cloud data to mitigate LIDAR’s low resolution, and cluster-
ing to recognize objects. They may also face additional drawbacks,
including high overhead and reliance on specialized datasets, ulti-
mately hindering real-time processing of large-scale point cloud
data. Therefore, we propose a novel detection pipeline based on the
LiDARMarker design, which detects the marker within the point
cloud and decodes the navigation information. Inspired by signal
processing concepts from communication systems, this pipeline
arranges LiDAR scan lines into a series of points and processes
them as signals.

5.2 Efficient Processing Method

Unlike existing image processing methods, our detection pipeline
fully utilizes the LiDAR scanning mechanism. By exploiting the
unique marker shape in the point cloud, we construct a determin-
istic process for marker extraction, decoding, and orientation es-
timation. As shown in Fig. 10, the pipeline comprises three main
steps: 1) data preparation, 2) pattern extraction, and 3) decoding
and orientation estimation. Notably, the pipeline is designed for
single-frame processing to ensure real-time performance. Accord-
ingly, the input is a single point cloud frame, and the output is the
decoded marker together with its orientation in that frame.

5.2.1 Data preparation. In this step, our goal is to normalize differ-
ent LiDAR data formats. First, we identify the LIDAR model from
the attributes of the point cloud and use this as a basis to initialize
the corresponding radar parameter settings, such as angular reso-
lution. Next, we normalize the data structure according to different
scanning methods. For prism-based LiDAR, the data format is the
same as that of mechanical radar, their scan lines are in the same
direction, as described in Fig. 3(d). In contrast, MEMS radar spans
the zigzag scanning to achieve 2D spatial scanning in both hori-
zontal and vertical directions as shown in Fig. 3(e). To maintain a
consistent data format, we arrange the prism LiDAR’s point cloud
in a serpentine sequence, effectively emulating the MEMS LiDAR’s

b) Right c) Back (d) Left

) Front

Figure 11: Examples of different orientations.

reciprocating scan by connecting the end of one scan line to the
beginning of the next.

5.2.2  Pattern Extraction. In our marker pattern design, the high-
reflective bar corresponds to the normal road surface, while the
low-reflective bar indicates the marker’s pattern. As illustrated in
Fig. 10, when the LiDAR beam crosses the marker, the intensity
of the point cloud exhibits a pronounced difference between the
high-reflective and low-reflective bars.

To extract pattern of marker, we first serially arrange the point
cloud data into a 1D signal benefited by previous step. Next, we
apply a gradient method to identify all falling and rising intensity
edges and then pair each falling edge with a corresponding rising
edge in a one-to-one manner. Each edge pair thus contains one
falling edge and one rising edge. Among these pairs, at least one
set includes the complete bit stream. Since the reciprocating zigzag
scan, there may be an inverted bit stream. To resolve this, we cal-
culate the yaw angle for each point and classify it as left-to-right
or right-to-left based on whether the yaw increases or decreases
relative to the previous point. As defined earlier, left-to-right is
the positive direction and right-to-left is the negative direction.
During decoding, we use the scan direction to correct any inverted
bit stream. We then apply filtering rules to discard outliers or edge
pairs that are too short or too long and thus unlikely to belong
to the marker. The remaining edge pairs, which may contain the
encoded bit stream, are subsequently used to decode the marker
and estimate its orientation in the next step.

5.2.3 Decode and Orientation Estimation. In this step, we decode
the bit stream from each edge pair and estimate the marker’s ori-
entation. First, we extract the intensity of all LIDAR points lying
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Figure 12: Implementation of marker and testbed.

between each pair of edges to form an intensity signal. Because seg-
mentation thresholds can vary with distance and ground material,
we employ a dynamic thresholding method to binarize the signal.
Initially, a preset threshold is applied to segment the signal into
predefined bars; each bar contains one or more occurrences of 0 or
1, and a voting mechanism determines whether the bar encodes a 0
or a 1. The resulting bit stream then undergoes parity verification. If
it fails, we retry with different dynamic thresholds; if all thresholds
fail, the corresponding edge pair is discarded. Successfully verified
streams are recorded as potential candidates. Once all edge pairs
have been processed, the most frequent bit stream among the candi-
dates is selected as the final result. Finally, the coordinates derived
from successfully decoded edge pairs are used to determine the
spatial position of the marker, which is output together with the
decoding and orientation results.

For orientation estimation, we first fit a minimum enclosing tri-
angle to the marker outline extracted from edge pairs, clipping the
Z-axis to reduce computational complexity. We then derive the ori-
entation from the triangle as follows: 1) identifying the vertex with
the smallest sum of sides, 2) calculating the vector sum of its two
sides, and 3) computing the perpendicular vector as the marker’s
orientation. Because traffic signs only require coarse orientation
accuracy, we divide directions into eight categories, e.g., front, back,
left, right, front-left, front-right, back-left, and back-right, align the
calculated orientation with the nearest category.

Please note that the quarter-circle shape of LiDARMarker sup-
ports decoding only when oriented between front-left and front-
right. In other orientations, LIDAR scan lines cannot fully cover
all bars. Fig. 11 illustrates examples: front, right, back, and left.
Sparse point clouds and large scan line intervals fail to capture low-
reflection bars in orientations like Fig. 11(b) and Fig. 11(d). While
Fig. 11(c) is decodable, markers facing backward are irrelevant as
they correspond to opposite-lane signs. Therefore, decoding results
outside the front-left to front-right range are discarded to ensure
only relevant data is used for navigation.

6 Evaluation

6.1 Evaluation Setup and Metrics

6.1.1 Setup. Marker Fabrication. LiDARMarker was originally
designed to be printed directly on pavement surfaces. However, we
chose to fabricate the marker on prefabricated acrylic panels for
greater flexibility in experimentation because that large-scale road
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Marker paremeters

Road surface Asphalt
Bar width 0.15m
Bars 11
Radius 2m
Start bar offset 0.35m

Encode bits 8 bits + 1 parity bit
5,11,27,48,52,57,114,115,
121,154,155,185,245

Table 1: Marker evaluation parameters.

Test code set

LiDAR & Decoding parameters

Installition height 1.6 m

LiDAR refresh rate 10 Hz

Angular resolution 0.2 degree
Preset threhold 8+1

Table 2: LiDAR and decoding evaluation parameters.

Orientation:Front
BPistance:9.15m

Figure 13: The results of LiDARMarker in RViz.

coating requires government approval. As shown in Fig. 12(a), the
marker features all low-reflection bars coated with an IR-absorbing
coating. Each bar is laser-cut into individual pieces for easy trans-
portation and flexible setup. The marker has a 2-meter diameter and
consists of 11 bars, encoding 8-bit of traffic sign information plus 1
parity bit. To facilitate testing, we prepared 13 unique encodings
selected from the 8-bit encoding space, with a default encoding of
0x05 used in most evaluations.

LiDAR and Decoding. We used commercially available models,
including the Robosense M1 [32] and Hesai AT128 [14], to simulate
real-world applications. The M1 has a resolution of 128x600 points
per frame, while the AT128 offers 128x1200. Due to its lower image
quality, the M1 was primarily used to establish a performance
baseline for LiDARMarker. LiDAR was mounted horizontally at
1.6 m, with a 10 Hz refresh rate and 0.2 degree angular resolution.
LiDAR specifications are in Table 2. The point cloud data is captured
via an automotive Ethernet gateway, converting it into standard
Ethernet packets. Both the LiDAR and gateway are powered by
a 12 V supply. The decoding pipeline, implemented in C++ on a
laptop with an AMD 8-core CPU@4.5G Hz and 16 GB memory, runs
under ROS2 Humble. Data is parsed into a PointCloud2 structure by
LiDAR drivers and sent to the decoding algorithm node via ROS2
messages. For binary decoding, we use an intensity threshold of
8 + 1. Each test data consists of about 10 seconds of point cloud
data, or 100 frames. All tests are conducted with default parameters
unless specified otherwise.

Metrics. Four metrics evaluate frame-level performance: Detec-

% Correct Rate is defined as

Nora ; Decoding Time, measured from frame pub-
lication to decoding output; False Alarm Rate (FAR), the ratio of
falsely detected markers to total non-marker frames.

tion Rate is defined as Ry,c; =

R Ncorrectly decoded |
corr — — N...
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Figure 14: Overall performance of the LiDARMarker.

6.2 Evaluation Results

Fig. 13 shows the marker decoding and orientation estimation in
RViz. The marker is outlined in green, with a blue arrow indicating
orientation. IDs, orientation, and distance estimates are labeled,
offering an intuitive view of real-time performance. This visualiza-
tion highlights how effectively the system detects and orients the
marker in various setups.

6.2.1  Overall Performance. Detection Distance. To assess the de-
tection distance of the LiDARMarker, we evaluated the detection
rate and accuracy at distances from 7m to 15m. The results, shown
in Fig.14(a), indicate a consistent 100% detection rate up to 15 m.
However, detection accuracy slightly declines, staying above 97%
up to 14m and dropping to 94% at 15m. This drop is mainly due to
the lower point cloud resolution at greater distances. As the marker
moves farther away, fewer LiDAR points are captured, reducing
resolution and precision. Additionally, as the distance increases,
the laser aperture widens, creating a larger illuminated area per
beam. This causes intensity measurement blurring, introducing
uncertainty in the decoding process, especially in binary decoding,
which relies on clear intensity thresholds. As a result, decoding
errors increase at greater distances.

Orientation Estimation.We assess the LiDARMarker’s perfor-
mance in estimating the marker’s orientation, with the marker
placed 9 m from the LiDAR and rotated at different angles. As
shown in Fig.14(b), the marker’s orientation is categorized into 8 di-
rections: F, FR, R, BR, B, BL, L, and FL. Detection rate is almost 100%
for all orientations, and the orientation accuracy exceeds 97% in all
cases. Minor errors in orientation estimation stem from factors like
incorrect fitting of the marker in the LiDAR point cloud, which can
miscalculate its true orientation. Additionally, IR absorbing coating
in the environment can cause random LiDAR measurement errors,
introducing noise that affects orientation accuracy.
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Distance Estimation. We evaluate distance estimation accu-
racy across ranges from 7 m to 15 m. The results in Fig.14(c) show
the absolute error at different distances. At 7 m, fluctuations oc-
cur due to the LiDAR’s limited viewing range, where the marker
partially falls outside the sensor’s line of sight at its default height
of 1.6 m. This causes incomplete or distorted data, affecting the
distance estimation. At around 9 m, increased errors may result
from slight misplacement or misalignment of the marker relative
to the LiDAR’s field of view. Generally, the error stays below 15 cm
up to 14 m but rises significantly to about 24 cm at 15 m, reflecting
the reduced precision of LIDAR data at greater distances, as noted
in the detection distance evaluation. The estimated error exceeds
the LiDAR’s calibration accuracy because the marker’s center falls
between adjacent scan lines, making it inaccessible to the LiDAR’s
ranging.

Time Consumption. To evaluate the real-time performance
of the system, we measure the time consumption of each step in
the decoding pipeline, as illustrated in Fig. 14(d). Since the number
of LiDAR points associated with the marker varies with distance
(decreasing as the distance increases), we evaluated the time con-
sumption at different distances to capture this variation. The results
indicate that the time required for the preparation and pattern ex-
traction steps is relatively stable, averaging around 10 ms and 2 ms,
respectively. In contrast, the decode and orientation estimation
steps are completed in approximately 100ms, with the time con-
sumption decreasing slightly as distance increases. This reduction
occurs because fewer LiDAR points are occupied by the marker at
greater distances, resulting in decreased computational load during
decoding and orientation estimation.

Mobility Test. We evaluated the system on a moving vehicle at
speeds from 5 km/h to 45 km/h, excluding frames recorded during
acceleration and braking. As shown in Fig. 14(e), the correct rate
remains above 90% up to 35 km/h but drops to 76% at 45 km/h.
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At lower speeds, vibrations cause frame stretching and truncation,
leading to decoding errors. At higher speeds, the restricted detec-
tion range (<15 m) yields fewer frames (approximately 13 frames
at 40 km/h with a 10 Hz LiDAR refresh rate), thereby reducing
opportunities for marker detection and decoding.

Camera-based Method Comparison. We compare the com-
munication range and frame rate of LiDARMarker with a camera-
based method using ArUco [33] markers, which are printed on
1.6 m X 1.6 m paper with a 250-code space. The area and payload
space of this marker are comparable to LiDARMarker. The decoding
algorithm utilizes the built-in OpenCV library [29]. The compari-
son was conducted under identical lighting conditions, including
both daylight and low light, across varying distances. The detection
range results, shown in Fig. 14(f), demonstrate that LiDARMarker
performs similarly to the camera-based method in daylight but out-
performs it under low light conditions. Specifically, LiDARMarker
is able to decode the marker at distances of up to 15 m in both
daylight and low light, while the camera-based method is only
able to detect up to 8 m in low light. In Fig. 14(g), the frame rate
comparison shows the camera-based method can achieve at least
85 Hz in daylight, while LiDARMarker can achieve 61 Hz. However,
the camera-based method achieves a frame rate exceeding 120 Hz
under low light conditions, as the marker pattern is not detected,
causing the decoding process to exit immediately.

False Alarm Rate. Evaluations under slightly crowded and
heavily crowded traffic yielded FARs of 4.06% and 7.19%, respec-
tively (see Fig. 14(h)). A heavily congested environment has more
pedestrians and vehicles and a more complex environment than a
lightly congested environment. In heavily crowded conditions, the
presence of more vehicles and pedestrians intensifies point cloud
noise, heightening the chance of false alarms if random reflections
are interpreted as markers.

Summary. In conclusion, the LiDARMarker exhibits excellent
performance in terms of detection rate and orientation estimation,
with minor degradation in distance estimation accuracy beyond
14 m. This degradation is primarily due to reduced point cloud
resolution and the challenges in accurately decoding the marker at
longer distances. Furthermore, the system’s real-time processing,
averaging 15 ms (enabling operation at up to 61 Hz, even though
the LiDAR refresh rate is 10 Hz), suits applications that demand
high responsiveness.

6.2.2 Impact of parameters. LIDAR’s Pitch Angle. When LiDAR
is deployed on a vehicle, the manufacturer may intentionally create
a pitch angle for aesthetic reasons or to reduce wind resistance. To
evaluate system robustness, we tested the marker detection rate
and correct decoding rate at different pitch angles, as shown in
Fig. 15(a). The marker was placed at 9 m with the LiDAR installed
0.9 m above the ground. The height was lowered from the standard
1.6 m to ensure the marker remained in the LIDAR’s field of view at
higher pitch angles. The results show stable performance at pitch
angles from -5° to 5°, with both detection and decoding rates ex-
ceeding 98%. However, at -2°, performance declined slightly due to
a smaller illumination angle and higher laser echo energy, affecting
the threshold segmentation method. It is important to note that
excessive downward angles reduce the LiDAR’s detection range
and effective field of view.
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Figure 15: The influence of pitch angle, installation height,
and encoded bit length on system performance.

LiDAR’s Installation Height. The installation height of the
LiDAR is another critical parameter that can affect the system’s
performance. This evaluation is designed to simulate that the Li-
DAR is on the roof of some vehicles and below the headlights on
others. The results, shown in Fig. 15(b), demonstrate that the sys-
tem’s performance remains stable at installation heights ranging
from 0.9 m to 1.6 m. The detection rate and correct rate both keep
above 99% at 9 m distance. However, when the installation height is
reduced to 0.6 m, the detection rate keep trend but the correct rate
has a significant decline. This is because the LiDAR’s laser beam
is too close to the ground, which causes the intensity difference
between the marker and the ground to be too small, making it
difficult to distinguish low reflect bars from the ground. Therefore,
the system’s performance is optimal when the LiDAR is installed
above 0.9 m.

Encoded Bit Length. The encoded bit length is another im-
portant parameter that can affect the system’s performance. The
results, shown in Fig. 15(c), demonstrate the system’s performance
with encoded bit lengths ranging from 8-bit to 12-bit. Longer en-
coded bit lengths increase the number of bars in the marker, which
complicates the decoding process. The primary reason is that a
single-bit parity check is insufficient to filter out incorrect decoding
results, especially with fewer scanning lines at greater distances.
Additionally, more bits reduce the effective working range.

Road Surface Material. Road surface material can affect sys-
tem performance as different surfaces reflect the LIiDAR’s laser
beams differently. To assess robustness, we tested four common
road surfaces: asphalt, cobblestone, flagstone, and patterned aggre-
gate, as shown in Fig.16(a). The patterned aggregate features stripes
with intensity contrast similar to our markers, evaluating the sys-
tem’s anti-interference capability. Results in Fig.16(b) show reliable
performance at shorter distances, with accuracy declining at longer
distances, particularly on uneven surfaces like cobblestone. This is
due to laser beam scattering on uneven surfaces, which leads to less
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precise point clouds and reduced decoding accuracy. However, the
system maintains stability on asphalt and flagstone, with accuracy
above 98% at 14 m. The patterned aggregate surface shows 92%
accuracy at 15 m, comparable to other surfaces, indicating that the
system is robust on most road surfaces, with slight performance
loss on highly textured or uneven ones.

7 Discussion

Work Range, Scenarios, and Potential Improvements. Cur-
rently, LiDARMarker is limited to an operational range of 15m due
to three primary factors: 1) LIDAR resolution: An autonomous Li-
DAR typically provides 128 vertical lines over a 120° field of view
with a 0.1° resolution, yielding roughly 128*1200 pixels—about 13.5
times lower than a 1080p camera; 2) Aperture effect: The spreading
of the laser beam diminishes its intensity, reducing the contrast
between reflective bars and complicating the decoding process; 3)
Intensity resolution: With 8-bit data mostly spanning the 0-20 range,
the dynamic range is limited, making it challenging to distinguish
the encoded bars at extended distances.

Thus, LiDARMarker is best suited for urban environments with
low-speed conditions. To boost performance, potential improve-
ments include increasing the LiDAR resolution, correcting for per-
spective distortions at varying distances, and employing higher-
fidelity intensity representations (e.g., 10-bit or floating-point). Ad-
ditionally, using higher-order modulation schemes (such as FSK or
QAM) could enhance both data rates and the decoding range.

Durability. The durability of LiDARMarker primarily depends
on its IR absorbing coating. Originally designed for building glass,
this coating is resistant to sunlight, water, and abrasion. Research [47]
on similar coatings indicates that there is no significant quality
degradation after 28 days of water immersion combined with sun-
light, thermal, and acid/alkali resistance tests.

Working wavelength. Current IR absorbing coatings are op-
timized for 905 nm LiDAR infrared, with reduced effectiveness at
1550 nm, potentially causing performance degradation. Nonethe-
less, it is feasible to develop coatings that strongly absorb at both
905 nm and 1550 nm [45].

8 Related Work

Camera-based marker systems. Fiducial marker systems were
initially developed for augmented reality applications [12] and later
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adapted to other camera-based scenarios, such as camera parame-
ter correction [8], localization [7], pose estimation [40], and object
detection and tracking [34]. Research has focused on improving
fiducial markers in terms of usability [19], detection speed [16],
accuracy [25], and robustness [16]. With the rise of autonomous
driving, fiducial markers have also been used in camera-based au-
tonomous vehicles for navigation, localization, and mapping.

However, camera-based fiducial marker systems have limita-
tions: (i) they are prone to ambient light interference, such as poor
visibility in low-light or adverse weather conditions, (ii) they can
cause visual pollution when deployed in public areas, and (iii) their
detection pipelines are complex and computationally expensive. To
address these issues, we propose an invisible marker system with a
faster decoding algorithm that leverages LiDAR scanning features.

LiDAR-based marker systems. LiDAR sensors provide 3D co-
ordinates (x, y, z) and reflection intensity i of an object’s surface.
When an IR laser beam hits an object, the reflection intensity de-
pends on factors like surface material, color, and angle of incidence.
A key observation in state-of-the-art systems is that black surfaces,
which absorb most IR light, produce low reflection intensities, while
white surfaces, which reflect most IR light, produce high reflection
intensities. The first LIDAR-based fiducial marker, LIDARTag [16],
introduced real-time detection and decoding compatible with April-
Tags [28, 37], though it required a dedicated detection zone. Later,
Yibo et al. [25] improved detection methods to decode multiple
markers integrated into the environment. Other works optimized
marker systems by enhancing pose estimation [15] and shape de-
sign [39]. For example, Jiunn-Kai et al. [15] optimized marker shapes
to reduce pose ambiguity, while A4LidarTag [39] proposed a circular
hole pattern to embed localization information via depth differences.
However, these systems are limited by operation range (within 1 m)
and require high-resolution LiDAR hardware. Despite these ad-
vances, LIDAR-based fiducial marker systems face challenges in
autonomous driving. First, visible markers cause visual pollution,
disrupting driver vision and degrading urban aesthetics. Second,
detection and decoding algorithms are computationally intensive.
Common pipelines involve clustering, pose estimation, 2D projec-
tion, and decoding, processes inherited from camera-based fiducial
systems that add significant computational overhead.

Multimodal marker systems. To address the limitations of
single sensors, several works propose multimodal fiducial marker
systems combining sensors such as cameras, LIDAR, and thermal
cameras. Most research focuses on camera and LiDAR fusion for
calibration [2, 20, 39, 43, 44] or navigation [6]. ArTuga [4] developed
a multimodal fiducial marker system using temperature, reflectiv-
ity, and color as coding properties, detectable by thermal cameras,
LiDAR, and cameras. However, their marker requires a power sup-
ply to maintain temperature differences, making it unsuitable for
outdoor environments.

9 Conclusions

In conclusion, we present LiDARMarker, a novel LiDAR marker
system designed to address the limitations of traditional mark-
ers by leveraging LiIDAR’s unique imaging and scanning proper-
ties. LiDARMarker enables accurate and efficient navigation for
autonomous vehicles through its innovative marker design, which
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supports real-time decoding and robust orientation estimation. The
experimental results demonstrate its effectiveness in improving nav-
igation accuracy, maintaining robustness under varying conditions,
and achieving real-time performance with minimal computational
overhead.
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